

Paul Page / EPT/ E&P Operations & HSE October 2009

Content

- How are drilling wastes generated?
- What are the drilling wastes?
- How do we deal with these wastes?
- The future offshore drill cuttings processing

How are drilling wastes generated?

Circulating system and solids control

The role of drilling fluids in drilling waste

 Drilling fluids have complex chemistry. They are designed on a well to well basis. They become a waste and create waste.

Scale of the waste

- There is no such thing as a typical waste.
- Drilled cuttings vary in nature (consistency) and rate of production.

This makes processing complex

Oil based contaminated cuttings 200 – 1,000 mt / well

Dealing with oil based waste streams in the North Sea

The History:

- Diesel based fluids introduced in late 70's.
- Replaced by mineral oils in 80's.
- Replaced by synthetic bases in mid 90's.
- All oil and synthetic based fluids prohibited for discharge from 2000 (< 1% allowed).
- Industry now utilises refined mineral oil as the base for the fluid.

Cuttings re-injection through surface wellheads

Platforms – all BP Platforms equipped with cuttings reinjection systems

- · Typically around 1,000m ss.
- · Wells may take several hundred thousand bbls of slurry.
- · Annular injection used.
- · Now all drilling wastes injected. (Moving to zero discharge)

Cuttings Re-injection through subsea wellheads

- Subsea injection is possible.
- BP ran first offshore trial in 1991 as a R&D project (Drilquip & FMC).
- 1998 first global commercial use of sub-sea re-injection with Statoil using Coflexip Stena Offshore system.
- 300 m water depth.
- 20,000 m³ injected
- However, needs 15 20 wells to be economic.

Onshore Processing

 Majority of cuttings now brought to shore for thermal processing prior to land fill (50,000 – 70,000 mt / annum)

Onshore treatment and disposal

 Despite many field trials, thermal treatment followed by land fill is still used.

Tried

- Coal fired power station (fuel)
- Bioremediation
- Cold asphalt encapsulation

Commercial and logistics wrong.

Offshore processing of oily drill cuttings

Thermtec – Thermomechanical Cuttings Cleaner (TCC)

Offshore processing of oily drill cuttings

 TCC RotoMill on board the Global Santa Fe Artic IV in the UK sector of the North Sea

- Processed drill cuttings for 12-1/4" and 8-1/2" hole sections
- Operational performance 12-1/4" hole section ONLY:
 - Total cuttings generated: 378 MT
 - equiv. 75 skips of 5MT filling capacity
 - Total cutting slurry processed: 517MT (include added mud)
 - Total recovery / discharged:
 - Base oil: 402bbl
 - Water: 59.77m³ (with total of 2.10kg HC, i.e. 0.004%HC)
 - Solid/Dust: 431.88 MT (with total of 97.20kg HC, i.e. 0.023%HC)
 - Process rate: 4.5MT/h (average)

Microwave processing of oil contaminated drill cuttings

E= electric field

H = magnetic field

 λ = wavelength (12.2 cm for 2450 MHz)

c = speed of light (300,000 km/s)

What is a microwave?

Microwave heating at 3 key frequencies only

Material interaction

Dielectric properties

- Describes the interaction between the electric field and a material.
 - Determine how well a material will heat in a microwave field
- Vary with temperature, frequency, density, moisture content
 - Specialised techniques to measure
- They consist of 2 parts
 - Dielectric Constant (ability to store energy)
 - Loss Factor (ability to convert stored energy to heat)
- Loss Tangent = Loss Factor / Dielectric Contant
 - Good measure of microwave heating ability

Common materials

Microwave treatment mechanisms

Studies of dielectric properties showed that water is the only phase that can be directly heated by microwaves:

Material	Dielectric Constant (ε') at 25°C	Dielectric Loss Factor (ε'') at 25°C
Oi1	2	0.002
Feldspar	2.6	0.02
Quartz	3.8	0.001
Mica	1.6	0.005
Water	77	13

Oil removal mechanisms - Entrainment

- Entrainment of oil with escaping pore-steam is the target mechanism requires a high heating rate
- Only water is heated
- Oil is removed as liquid droplets
- Bulk temperatures do not exceed 100°C

Oil Removal Mechanisms

The fundamental effects were further decoupled into four specific mechanisms, all of which arise from heating water:

- Entrainment of oil in steam created from interstitial water
- 2. Steam Distillation (boiling point depression)
- 3. Conventional drying stripping / absorption in sweep gas
- 4. Thermal desorption of oil via heat transfer from superheated water

Advantages of microwave treatment of oil contaminated drill cuttings

- Selective Heating
 - High efficiency energy is not wasted heating the entire process material
- Volumetric Heating
 - Granular materials such as drill cuttings have very poor heat transfer properties
 - Microwave heating can be complete within seconds
 - Low residence time requirement which leads to equipment with a small footprint
- Electrically Operated
 - Low utility demand
 - High conversion efficiency from electricity to MW (~90%)

Microwave heating systems

- Few processes use off the shelf applicator designs
 - Different material properties
 - Different process requirements
- Geometry critically determines performance
- Different types but:
 - Need to consider mechanism (time, power, power density etc)

Multi-mode cavity

Single-mode cavity

Scale-up concept

The chosen concept for development was a 'tunnel applicator'

Schematic of the pilot scale continuous treatment apparatus

Fully Operational 500kg/hr Microwave Drill Cuttings Treatment Process at Nottingham University

Effect of Material Throughput

...data-set to be extended through the study of greater range of cuttings samples.

Microwave heating equation

$$Pd = 2\pi f \varepsilon_o \varepsilon'' E_o^2$$

Where

- Pd is power density (W/m³)
- F is the frequency of the applied wave (Hz)
- ε₀ is the permittivity of free space (8.854 x 10⁻¹²F/m)
- ε" is the dielectric loss factor of the material being heated
- E₀ is the magnitude of the electric field within the material (V/m)

Energy Requirements

...data-set to be extended through the study of greater range of cuttings samples.

Energy Requirements

Power requirements

- Hammer mill 175 200 kW per 1 TPH
- PERA Microwave process 120-150kW per 1 TPH
- Nottingham Univ. Microwave process 70 80 kW per 1 TPH

Microwave Treatment of Oil Contaminated Drill Cuttings – Project Roadmap

Advantages / USPs

- Simple process unique heating and oil removal mechanisms
- Low residence time / fast processing rates
- Can achieve < 1% AND <0.1 % oil retention (hence, offshore and onshore applications)
- Small footprint
- Low power requirements 70 80 kW per 1 TPH cuttings
- Low equipment capex and opex compared to existing indirect thermal desorption systems
- Inherently safer system for use offshore

Opportunities

- Low capex and small footprint provides much wider applicability and economic viability than currently exists for thermal desorption technologies.
- Opportunity to improve offshore drilling performance by using oil based muds instead
 of water based muds in top hole sections due to the small footprint / high throughput
 capability of the process.

The future

- Offshore processing is the key.
- Alternative technologies microwave
- Inter-field transfer / offsite offshore CRI disposal
- Improved water handling systems
- Industry has travelled a long way. It's offshore impacts are now negligible compared to where it was in the 70's / 80's.

Thank You!